Posts

Showing posts from September, 2010

SWMM 5 Related Websites

Image
MY BLOG LIST SWMM 5 or SWMM 5.0 Blog How to Use the SWMM 5 Excel Tool with InfoSewer CSV Files   -  How to Use the SWMM 5 Excel Tool with InfoSewer CSV Files 1. Export Link and Manholes in InfoSewer for your current Scenario to CSV files, 2. Set up the ... 4 minutes ago The South Florida Watershed Journal Belgian potato chips?   -  What’s your favorite flavor of chips? Interestingly, both the potato and the term barbecue are indigenous to the Americas While not exactly a watershed-rel... 13 hours ago Innovyze Blog 2D meshing – Avoiding small elements (and why this is so important)   -  When generating a 2D mesh in Innovyze products (such as InfoWorks ICM, CS 2D and InfoSWMM 2D) it is very important to avoid small mesh elements, as just on... 3 days ago SWMM5 Increase in heavy rainfalls over past 60 years in upper Midwest, US   -  Increase in heavy rainfalls over past 60 years in upper Midwest, US http://www.sciencedaily.com/releases/2013/03/130313182312.htm March 14, 2013 Mar. 13... 4

Conduit Lengthening in SWMM 5

Conduit Lengthening in SWMM 5 If you use the conduit lengthening option in SWMM 5 then your short conduits will be lengthened based on the CFL or explicit time step criterion. Any conduits in which the Length Factor or the courant time step link length over the original length is greater than 1 will be lengthened and will have its roughness lowered so that the conduit is hydraulically the same at full conduit depth. The full area, full width and full hydraulic radius stay the same in the modified link – only the length, slope and roughness are altered. Length Factor = (Wave Celerity + Full Depth Velocity) * Time Step / Conduit Length, and for those links in which the Length Factor is greater than 1 New Roughness = Old Roughness / ( Length Factor ) ^1/2 New Slope = Old Slope / Length Factor A few metric's for showing how this option has altered the network are shown in the figure below: 1. The most important is the increase in Network full volume as you never want

SWMM 5 Flooding Volumes for Ponding and Without Ponding

Image
SWMM 5 Flooding Volumes for Ponding and Without Ponding No Ponded Area for a Flooded Node Ponded Area for a Flooded Node

Mud Flow in SWMM 5

Image
Comment: A method to model Mud flow and other Non Newtonian Fluids in a modified SWMM 5.  You will have to modify the code as described in the link to actually model mud flow.  Link Here

LPS Output Units when the Inflow is CMS

LPS Output Units when the Inflow is CMS 1. The inflow time series is in units of CMS, 2. If you set the internal units to LPS in Run Manager, 3. Set the output units to LPS in Output Unit Manager, 4. Add a Scale multiplier of 1000 in the Inflows DB Table then The inflows do not have to be altered, the internal model flows will LPS, the velocity will be m/s with 6 decimal places in the RPT file and the flows will be LPS with 3 decimal places in the RPT file.

Opening and Closing an Orifice with a Time Series Setting

Image
Opening and Closing an Orifice with a Time series Setting An example of RTC rules in SWMM 5

The Three Flows in SWMM 5 for a Link

The Three Flows in SWMM 5 for a Link There are actually three flows computed or used for a link in SWMM 5: 1. The St. Venant Flow equation flow 2. The Upstream Normal Flow Manning’s equation based on the link roughness, slope, upstream cross sectional area and upstream hydraulic Radius, 3. The flow actually used in the model which is either the flow computed from St. Venant or Manning’s equation The following three links shows how this works in a real model: · Link 8040 almost always uses the St. Venant Equation because it is dominated by backwater and surcharge · Link 8100 almost always uses Manning’s equation except at the beginning and end of the simulation, · Link 1600 is an adverse slope link and it mainly uses the St. Venant equation. · Flow = the flow actually used during the simulation · Qdynamic = the flow computed from the St. Venant Equation · QNormUp = Flow based on Manning's equation at the upst

Orifice Open and Close Speed and the Target Setting in SWMM 5

Orifice Open and Close Speed and the Target Setting In SWMM 5 there is an orifice parameter called setting which opens or closes the orifice opening by modifying the depth of the orifice. The setting is based either on a RTC rule of the orifice or the Flap Gate condition of the orifice and can be between 0 and 1. Closed is 0; Open is 1. The difference is that the target setting is what the setting should be based on the condition of the Flap Gate or the RTC Rules and the setting is the value actually used in the model. The open and close speed of the orifice modifies the orifice setting by changing the orifice setting based on the open and closing speed using the equation: New Orifice Setting = Old Orifice Setting + (Target Setting – Orifice Setting) * Time Step / Orifice Open and Close Speed If your target setting and the current orifice setting are both 1 or 0 then the orifice Open and Close option does not change the orifice setting. New Setting equals Old Setting in that cas

Example rule for the opening and closing of the orifice

Here is an example Real Time Control (RTC) rule for the opening and closing of an orifice. RULE Orifice1 IF SIMULATION CLOCKTIME >= 01:00:00 AND SIMULATION CLOCKTIME <= 2:00:00 THEN ORIFICE OR1@82309b-15009b SETTING = 1 ELSE ORIFICE OR1@82309b-15009b SETTING = 0 PRIORITY 1 ; Opens up the orifice at hour 1 of the simulation

SWMM 5 Link Time Step Calculations

SWMM 5 Link Time Step Calculations It you select the variable time step option in SWMM 5 then the program will compute the CFL time step for each link based on the ending system variables in the last time step based on the following steps. The smallest value of t is used for each time step but often the same small set of links will be the controlling time for the whole simulation. In the example shown below link 1570c is controlling the time step 83 percent of the time. The link time step is usually the controlling time step.

Two Steady State Options in InfoSWMM and H2OMap SWMM

Image
Two Steady State Options in InfoSWMM

Graphical Representation of Results in InfoSWWM

If you are graphing from the attribute browser you are restricted to 24 hours. If you are using the report manager then you select the graphing by changing the From and To dates.

SWMM 5 Interface Guide Tips for C Compilers

SWMM 5 Interface Guide Tips SWMM 5 has a Interfacing guide on  http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/#Downloads  for creating a VB, Delphi or command line C program to both run and printout some of the output file results from SWMM 5. The readme file is self explanatory in the file http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/swmm5_iface.zip but here are a few tips for those of you who want to compile the InterFaceGuide C code in a Executable file for Windows. 1. The first step is to make a new console program in Visual Studio 2. The second step is to add the files swmm5.h, swmm5_iface.h, swmm5_iface.c, test.c to the project header and source files. 3. Next add the file swmm5.lib as an additional dependency along with the directory name. 4. If you want to save the .out and .rpt files then you must comment out the remove statements at the end of test.c 5. You need to make a batch file to both run and save the input and output files from SWMM 5, 6. The file

Weather Underground to SWMM 5 Rainfall Time Series

Weather Underground is a site that provides excellent local weather information in the form of graphs, tables and csv files. You can use the data very easily in SWMM 5 by copying from Excel to a time series in SWMM 5. Here is the rainfall for a storm event in Tampa, Florida in September, 2010 Export from WeatherUnderground using the CSV File Export Option The data imported from the csv file to Excel and after the text to columns tool is used looks like this in Excel. The data is now ready to be imported into SWMM 5 after the time column is adjusted to fall on even 5 minute intervals. In Excel you can use the formula @ROUND((B2)/"0:05:00",0)*"0:05:00" to round all of the time values to 5 minutes. If you do not do this step then you will have problems in SWMM 5 due to the rainfall interval not being equal to the defined raingage interval. You will need to format the new rounded time as a time format for import into SWMM 5 Open up and make a new time series in SWMM 5

DWF Scale Factor in SWMM 5 for entering Population Data

Image
I (and a few others) think a welcome change to the DWF dialog in SWMM 5 would be the addition of another scale factor to modify the average flow field.  The purpose of the scale factor would be to allow the users to enter the DWF contributing population * the various DWF patterns * the scale factor (in units of cfs/person or l/s/person) in the Inflows dialog.  Some users of SWMM 5 prefer to use population directly in the GUI rather than doing this calculation externally and entering either the flow in cfs or l/s.  An example of why this would be useful is a future conditions model in which the population either increases or decreased in the catchment.

InfoSwmm import / export capabilities

Image
InfoSWMM can both import and export to shapefiles and other databases using the Import and Export Manager, GIS Gateway and CSV file import and export generator.